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ABSTRACT 

 This work aims to (1) review pertinent needs in the 

metrology landscape for evolving roll-to-roll 

nanofabrication processes and current art solutions 

which attempt to address these applications, and (2) posit 

precision design considerations which may enable a new 

class of tools for semi-continuous sampling of moving 

webs in R2R manufacturing with traditionally slower 

approaches that can achieve low levels of measurement 

uncertainty and resolve sub-diffraction features, 

patterns, or critical dimensions. 

 

1. INTRODUCTION 

 Roll-to-roll (R2R) fabrication of nanofeatured products 

promises to enable devices which meet or exceed the 

performance of traditionally wafer- or glass panel based 

manufacturing. Further, through the use of thin, flexible 

substrates, R2R fabricated products inherent the 

advantageous mechanical properties of the substrate and R2R 

processing significantly lowers device costs [1]–[4]. From 

functionalized materials like anti-fouling or anti-microbial 

coatings to displays, and even compute, logic, or memory, the 

driver for more compact, higher performance, and lower cost 

products has led to a significant amount of community 

interest in research to enable R2R processing techniques 

which can successfully bridge the lab-to-fab valley of death 

towards high volume manufacturing (HVM) [5]–[9]. While 

implementation of these techniques has occurred, widespread 

adoption, specifically for nanometer scale patterns, is still 

limited in a significant manner — process metrology [10], 

[11]. Fig. 1 shows three areas of research need by a National 

Institute of Standards and Technology (NIST) analysis of 

future advanced R2R fabrication [12]. Without a 

comprehensive solution which can address these hurdles, R2R 

fabrication of nanoscale patterns and products could easily fail 

to come to fruition. 

 

1.1 The Metrology Landscape in R2R Nanopatterning 

A significant body of work for R2R nanometrology 

focuses on optical or photonic methods given their non-contact 

and high throughput properties, and promising results have 

been presented in specific use cases [13]–[17]. For example, 

hyperspectral scatterometry has been demonstrated with 

accurate results and has become a staple of wafer based HVM 

over the last decade [18], [19]. This approach has been 

successfully extended to the R2R environment for in-line 

process control [20] in addition to methods like diffractometry 

for both substrate and master imprint template monitoring 

[21]. While these techniques have proven to be precise and 

non-destructive at throughputs commiserate with R2R 

manufacturing, these approaches can only resolve collections 

of features - spatial resolution is still inherently diffraction 

limited. This restricts applications for tasks such as defect root 

cause analysis that require direct nanoscale topography data, 

and further, requires a measurement calibration library, 

typically a time consuming and computational expensive 

process to build. While direct measurement of nanoscale 

features is common in rigid-substrate manufacturing with 

tools such as atomic force microscopes (AFMs) and scanning 

electron microscopes (SEMs), there exists a gap when it comes 

to R2R due to the inherent difficulty in out-of-line sampling 

[22], [23]. 

Where in wafer-based manufacturing it is trivial to take a 

single wafer for out-of-line inspection in a separate, slower, 

and more precise measurement tool, the opposite is true of 

R2R. As a sample may only be physically cut out of a web or 

roll of material, this procedure is often only possible after an 

entire roll of material has been processed – potentially leading 

to large amounts of waste if a process shifts out of control at 

the beginning of a roll and is not caught until an out-of-line 

sample is measured at the end of processing of a roll of 

material. As new and increasingly effective hybrid metrology 

methods develop, the importance of this gap in capabilities 

increase. Hybrid metrology, or a measurement approach where 

multiple tools, each with its own inherent measurement 
Figure 1: Major areas of research focus for advancing R2R 

manufacturing 
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advantages, are used as inputs to a some sort of algorithm, be 

it a black-, grey-, or physics-based-box, to decrease overall 

measurement uncertainty [23]. The aim of this approach is 

the creation of an system which seamlessly integrates 

information from multiple tools and informs closed loop 

process control, as is shown in Fig. 2 [24].  This could thus 

aid in improving yields to the point of economic viability for 

often nascent R2R processes, however, the lack of available 

high-resolution, direct topography measurement tools 

compatible with a R2R architecture has prevented full 

adoption of hybrid metrology frameworks in current art.  

 

DESIGN FOR QUASI-REALTIME SAMPLING 

In order to enable inline sampling with a throughput 

which will not affect overall R2R processing speed and a 

level of precision on the same order of magnitude of 

traditional AFM and SEM tools, a new framework for 

process metrology is required [25]. Two primary domains 

must be considered – web registration and regulation, and 

single chip atomic force microscope (sc-AFM) probe 

positioning. This presentation will focus on performance of 

the sc-AFM measurement probe and approaches for the 

machine structure, sensing, and actuation strategy for both 

unwind/rewind roller stands and the probe positioning 

system shown in Fig. 3, with the goal of providing an order-

of-magnitude increase in the available process metrology 

data for yield enhancement and process development in 

comparison to traditional high-precision, and critically, out-

of-line based sampling. 
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